Acreditación
CONEAU como carrera nueva. Dictamen en Acta 538

En “Borges, big data y yo” (Ed. Siglo XXI), Walter Sosa Escudero aborda cuentos como “El jardín de senderos que se bifurcan”, “Tlön Uqbar Orbis Tertius” y “La biblioteca de Babel” desde la estadística. La ficción “científica” de Borges se vuelve así un camino para comprender nuestra vida y nuestro comportamiento en tiempos de datos a gran escala

CURSOS OBLIGATORIOS

 
Estadística
Objetivos:
Proveer los conocimientos básicos de probabilidad, distribuciones y métodos gráficos exploratorios para comprender y abordar los temas de Análisis Inteligente de datos y Enfoque Estadístico del aprendizaje

Contenidos mínimos:
Etapas de una investigación. Estadística Descriptiva. Definiciones: Población, muestra, Variable, Valor de una variable, Dato, Observación o Medición, Caso. Gráficos: Histograma: construcción y análisis de posibles formas. Medidas de Resumen: Medidas de Posición o Centrado: Promedio o Media Muestral, Mediana Muestral, Media α- Podada. Medidas de Dispersión o Variabilidad: Rango Muestral, Varianza Muestral. Desvío Estándar Muestral, Coeficiente de Variación, Distancia Intercuartil, Distancia entre Cuartos, Desvío Absoluto Mediano. Box-Plots. Construcción y análisis. Outliers. QQ-plot. Inferencia estadística: Método de momentos. Intervalos de Confianza. Construcción e interpretación. Intervalos de confianza para los parámetros de una distribución normal. Método general para obtener intervalos de confianza. Intervalos de confianza de nivel asintótico. Tests de hipótesis. Construcción e interpretación. P-valor. Error tipo I y II. Nivel de significación del test. Tests de hipótesis de nivel α para los parámetros de la distribución normal. Región de rechazo. Tests de hipótesis asintótico para la media de una distribución cualquiera. Relación entre tests de hipótesis bilaterales e intervalos de confianza.

Base de Datos
Objetivos:
Se espera que los alumnos puedan trabajar con diferentes tipos de datos y convertir entre varios formatos de bases de datos, importar y exportar tablas en diferentes formatos (Microsoft Excel, Fuentes de datos ODBC, Archivos separados por comas y tabuladores, Reconocer los caracteres especiales). Manejo básico de SQL. Manejo básico de consultas a bases de datos.

Contenidos mínimos:
Qué es una base de datos. Diferencia entre bases de datos y almacenamiento en archivos. Distintos tipos de DBMS (database management systems). Modelos de Datos. Modelos semánticos. Modelo Entidad/Relación. Diseño de una base de datos. Casos de estudio. Diferencias con UML. Modelos lógicos. Modelo relacional. Equivalencias entre modelos. Pasaje del modelo E/R al relacional. Lenguajes de Consulta. Álgebra Relacional. Operadores básicos: Selección, Proyección, Producto Cartesiano, Unión, Diferencia. Operadores complejos: Junta Natural, Cociente, Intersección. SQL como Lenguaje de Consulta. Transformación de AR a SQL. Cláusulas SELECT, FROM, WHERE, GROUP BY. Operadores avanzados. Diseño Relacional. Normalización. Tercera Forma Normal, Forma Normal de Óbice-Codd. Descomposición sin pérdida de información. Dependencias funcionales. Axiomas de Armstrong.

Introducción al Software R

Objetivos:
Que el alumno, al finalizar el curso, sea capaz de:

  • utilizar el software libre R.
  • ejecutar e interpretar gráficas.
  • desarrollar funciones de estructuras y controles de secuencia.

Contenidos Mínimos:

  • Instalación y ayuda en R.
  • Listas, data frames, arreglos y matrices.
  • Visualización de datos.
  • Funciones en R.
Aprendizaje automático
Objetivos:
El objetivo del dictado de esta materia es que el alumnado adquiera los conocimientos generales y prácticos del estado del arte en Aprendizaje Automático para su aplicación en la práctica profesional en Minería de Datos. Por medio del curso el alumno deberá:

Adquirir los conceptos básicos del aprendizaje computacional, sus fundamentos teóricos y una aproximación a sus bases formales;
Conocer los principales modelos y algoritmos de aprendizaje computacional;
Conocer metodologías que permitan seleccionar el modelo apropiado a los casos prácticos que se le presenten;
Internalizar los conceptos por medio de la práctica con herramientas de libre disponibilidad establecidas en el mundo académico

Contenidos mínimos:
Introducción conceptual al aprendizaje automático. Introducción inductiva al procesamiento no tradicional de datos. Estructura de sistemas de aprendizaje y notación estándar. Métodos inferenciales no deductivos, generalización y noción de orden parcial. Algoritmos: Espacio de Versiones, FIND-S y Eliminación de Candidatos. Inducción de árboles de decisión. Algoritmo ID3 y derivados. Sesgo, ruido, sobre-especificación, sobre-generalización y poda. Aprendizaje como búsqueda heurística. Algoritmo STAR. Indicadores de performance y error. Aprendizaje basado en instancias y aprendizaje Bayesiano. Aprendizaje no supervisado. Clustering. Algoritmos aglomerativos y de partición. Introducción al Text Mining, aproximaciones NLP y ML. Combinación de múltiples modelos: Votación, Bagging, Boosting. Otros modelos de aprendizaje: SVM, Vere, Genéticos, Redes Neuronales, Analíticos, con teorías de dominio, basados en explicaciones, etc. Nuevas tendencias en Aprendizaje Automático.

Conocimiento previo requerido: Algoritmos

Análisis Inteligente de datos
Objetivos:
Los Métodos del Análisis Exploratorio de Datos tienen por objetivo proveer una síntesis global de un conjunto de datos sin hipótesis previas. El principio que guía este curso es introducir a los estudiantes en técnicas estadísticas multivariadas, y familiarizarlos con el software que se utiliza en sus aplicaciones y en la resolución de problemas diversos.

Contenidos mínimos:
Análisis exploratorio y confirmatorio. Reseña histórica. Revisión de métodos exploratorios; tablas, gráficos, diagramas de tallo y hoja, box-plot, análisis de normalidad. Técnicas descriptivas multidimensionales. Análisis en componentes principales. Análisis factorial de correspondencias. Métodos de clasificación y agrupamiento. Clasificación Jerárquica. K-medias. Caras de Chernov. Gráficos de estrellas. Gráficos de Rayos Sol. Gráficos de Andrews. Relación entre Análisis factorial y Clasificación. Árboles de decisión. Métodos de segmentación. Análisis discriminante. Análisis de datos.

Conocimiento previo requerido: Estadística

Minería de Datos
Objetivos:
La materia estará orientada a conseguir que el alumno sea capaz de identificar los problemas que se producen en el cruce de información al importar datos provenientes de distintas fuentes y tomar decisiones tendientes a mitigar los efectos de esos problemas.
Explicar el funcionamiento de los algoritmos de reglas de asociación y sequential patterns
Analizar las mejoras / variantes propuestas a los algoritmos de reglas de asociación / sequential patterns. Resolver problemas de data Mining aplicando reglas de asociación/sequential patterns

Contenidos mínimos:
Presentación General de todos los algoritmos de minería de datos. Proceso de Descubrimiento del Conocimiento. Tipos de datos. Mecanismos de limpieza de los mismos. Reglas de asociación. Patrones secuenciales. Aspectos temporales de las reglas de asociación. Otras aplicaciones de las reglas de asociación.

Conocimiento previo requerido: Base de Datos

Aplicaciones de Minería de Datos a la Economía y Finanzas
Objetivos:
Que los alumnos aprendan a desarrollar análisis de data mining que sean competitivos con los de nivel profesional existentes en el mercado argentino.Contenidos mínimos:

Metodologías CRISP, Six sigma y SEMMA. Comparación de modelos. Nociones de Database Marketing. DataSets desbalanceados. Overfitting.
Conocimiento previo requerido: Minería de Datos y Análisis Inteligente de Datos.

Aplicaciones de Minería de Datos a la Ciencia y la Tecnología
Objetivos:
Que los alumnos aprendan a desarrollar análisis de data mining que sean competitivos con los de nivel profesional existentes en el mercado argentino.

Contenidos mínimos:
Metodologías CRISP, Six sigma y SEMMA. Comparación de modelos. Nociones de Database Marketing. DataSets desbalanceados. Overfitting.
Conocimiento previo requerido: Minería de Datos y Análisis Inteligente de Datos

Enfoque Estadístico del Aprendizaje
Objetivos:
Se pretende que el alumno adquiera conocimientos que le permitan construir modelos predictivos mediante métodos de regresión múltiple y logística. Que adquiera nociones de estimación bayesiana y por máxima verosimilitud y pueda seleccionar los modelos adecuados para el tratamiento y solución correcta de los problemas tratados.

Contenidos mínimos:
Enfoques de la inferencia estadística. Estimación por Máxima Verosimilitud. Inferencia Bayesiana. Regresión lineal simple y múltiple. Estimación de mínimos cuadrados. Análisis de supuestos del modelo. Inferencia. Diagnósticos de Influencia. Multicolinealidad. Transformaciones. Variables dummies. Interacción. Métodos de selección de variables. Odds y Riesgo Relativo. Regresión logística binaria. Logits. Estimación MV. Inferencia en el modelo. Pruebas de ajuste de Hosmer y Lemeshow. Métodos de selección de variables.Medidas diagnósticas. Clasificación con Regresión logística. Regresión logística multinomial y ordinal.

Comparación de modelos y algoritmos. Evaluación y selección de modelos. LRT y devianza. Indicadores de ajuste y comparación más utilizados: AIC, BIC, RMSEA, KS, medidas de parsimonia, AUC, etc. Métodos gráficos: curvas ROC, gráficos lift, gráficos de ganancia, gráficos de riesgo, etc. Factor Bayes.

Redes bayesianas. Condición de Markov. Distribuciones asociadas a una RB. Aprendizajes en una RB. Propagación de la evidencia. Aprendizaje paramétrico: MV versus Bayesiano. Redes para clasificación. Naive Bayes. Algunos tópicos a desarrollar en los trabajos de intensificación: Nociones de muestreo y remuestreo. Validación cruzada. Bootstrap, Jacknife, y métodos relacionados.

Gibbs Samping: aplicaciones. Regresión Ridge y Lasso. Regresión por mínimos cuadrados parciales (PLSR). Tratamiento de datos faltantes.

Conocimiento previo requerido: Estadística

 
Seminario Integrador
Objetivos:
Este Seminario tiene dos partes diferenciadas:
Preparación y concreción del plan de trabajo:
La primera parte está orientada a que los estudiantes reflexionen sobre el TFI, a partir de la revisión de los aspectos que componen la actividad y de herramientas de búsqueda bibliográfica.
Aporte de herramientas para la redacción del Trabajo Final Integrador:
La segunda parte está orientada a que los estudiantes adquieran conceptos de redacción científica, caracterizando los diversos aspectos que conforman un TFI. Sus objetivos específicos son:
Proporcionar elementos de organización y escritura de TFI.
Examinar la construcción de elementos discursivos específicos: introducción, metodología, resultados y discusión.
Discutir formatos de presentación de datos: tablas, figuras y textos.
Analizar el proceso de preparación y presentación de TFI.
Revisar el proceso de presentación del TFI: entrega, referato, correcciones y defensa.

Contenidos Mínimos:
Artículo científico y de TFI. Sentido y características de un TFI. Introducción. Objetivos. Metodología. Conceptos básicos de redacción. Búsqueda bibliográfica. Presentación de resultados. Discusión. Referencias. Entrega y correcciones del TFI